

### CENTER FOR GEOGRAPHIC ANALYSIS

## Spatial Analysis: Raster



### Rasters are beautiful.



#### Rasters don't depict objects; they represent space.

Rasters are made of pixels, called cells. The cells are squares of a fixed size, and each contains a single value.

They are arranged in rows and columns.



### The pixel size and number of rows and columns can be viewed under Properties > Source.

| Y diao           |                                                                                               |
|------------------|-----------------------------------------------------------------------------------------------|
|                  |                                                                                               |
| 8004, 7583       |                                                                                               |
| 6                |                                                                                               |
| 28.5, 28.5       |                                                                                               |
| 347.30 MB        |                                                                                               |
| TIFF             |                                                                                               |
| continuous       |                                                                                               |
| unsigned integer |                                                                                               |
| 8 Bit            | -                                                                                             |
|                  |                                                                                               |
|                  | 8004, 7583<br>6<br>28.5, 28.5<br>347.30 MB<br>TIFF<br>continuous<br>unsigned integer<br>8 Bit |

#### The pixel size determines the resolution of the raster.







Rasters can be continuous or discrete --"classified."

Continuous rasters can be displayed with a classified symbology or they can be actually reclassified.

#### Special classified rasters include binary rasters and rasters with a limited set of values, such as landcover.



## Raster data comes in as many formats as other image data.

Sometimes a number of rasters are packaged together in a "stack."

Taking apart a raster stack or opening some proprietary formats can require special techniques or outside software.

- ESRI Grid
- Geo TIFF
- IMG
- JPEG
- MrSID
- netCDF
- HDF
- USGS DEM



In multi-band rasters, each band can be a range of wavelengths, for example the red/green/blue bands of an RGB composite image.

#### A single band raster holds one value per cell.



light intensity

#### One of the most common rasters is a DEM – Digital Elevation Model.

# Each pixel has a value for elevation above sea level.

Raster analysis can take place in two (or more) different dimensions. Some processes analyze the surface of a single raster. Others match up the same pixel location across several raster layers.





#### Example of surface-level analysis: slope from an elevation raster



| 13 | 93 | GIT |    |    | 03 | 44 | 23 | 45 | 00 |
|----|----|-----|----|----|----|----|----|----|----|
| 04 | 34 | 67  | 70 | 22 | 48 | 56 | 02 | 32 | 13 |
| 75 | 95 | 46  | 83 | 35 | 05 | 82 | 25 | 47 | 57 |
| 94 | 06 | 98  | 24 | 14 | 64 | 58 | 53 | 72 | 15 |
| 77 | 97 | 26  | 85 | 37 | 07 | 16 | 27 | 49 | 61 |
| 28 | 50 | 00  | 30 | 20 | 62 | 60 | 55 | 66 | 17 |
| 10 | 40 | 59  | 87 | 39 | 09 | 96 | 29 | 51 | 41 |
| 08 | 18 | 42  | 38 | 76 | 99 | 88 | 78 | 86 | 19 |

Each pixel in the new raster is filled with a value computed from the corresponding cell in the old raster and its neighbors.

#### Example of surface-level analysis: aspect from an elevation raster



Each pixel in the new raster is filled with a value computed from the corresponding cell in the old raster,  $1 - 360^{\circ}$ representing which compass direction that pixel faces.

(North is both 1 and 360...0 is completely flat.)

#### Example of surface-level analysis: viewshed from an elevation raster



Cells in new raster contain 1 or 0, visible or not visible. Viewshed uses both raster and vector inputs.

#### Example of surface-level analysis: Density and Distance

Each cell holds the local density of points or distance from nearest point.







Kaster Calculator

#### Example of overlay analysis: Map Algebra

Pixel by pixel, layers are combined in mathematical equations and logical operators. The cells in the output raster will each contain the "answer."

| 7 |  | ľ |
|---|--|---|
|   |  |   |
|   |  |   |

| ч<br>ч                                                    |   |   |   |   |   |    |    |   |
|-----------------------------------------------------------|---|---|---|---|---|----|----|---|
| Map Algebra expression                                    |   |   |   |   |   |    |    |   |
| Layers and variables                                      | ^ |   |   |   |   |    |    |   |
| ♦ EucDist_Buil1                                           |   | - |   |   |   |    |    | - |
| ♦ KernelD_Buil1                                           |   | / | 8 | 9 | 1 | == | != | 8 |
| ♦ Redass_deve1                                            |   | 4 | 5 | 6 | * | >  | >= |   |
| Viewshe_elev1                                             |   |   |   |   |   |    |    | - |
| HillSha_elev2                                             |   | 1 | 2 | 3 | - | <  | <= | ^ |
| HillSha_elev1                                             |   |   | 0 |   |   | 1  | 1  |   |
| ♦ Aspect_eleva 1                                          | ~ |   | 0 | • | + | (  | )  | ~ |
| ("Slope_elevat1">10)*"Viewshe_elev1"                      |   |   |   |   |   |    |    |   |
| Output raster                                             |   |   |   |   |   |    |    |   |
| C:\Users\jik720\Documents\ArcGIS\Default1.gdb\rastercalc1 |   |   |   |   |   |    |    |   |
|                                                           |   |   |   |   |   |    |    |   |
|                                                           |   |   |   |   |   |    |    |   |

#### Example of overlay analysis: Local Statistics



**Standard Deviation** 

#### Sampling Raster Data to Features: Extract Values to Points Zonal Statistics







#### Odds & Ends:

#### **Raster** Clip



#### Odds & Ends: NoData vs. Zero





#### Odds & Ends: Make Permanent or Export Raster

