
AAG Annual Meeting
Chicago, IL
4/21/2015

Investigating Hadoop for Large
Spatiotemporal Processing Tasks

David Strohschein dstrohschein@cga.harvard.edu
Stephen Mcdonald stephenmcdonald@cga.harvard.edu

Benjamin Lewis blewis@cga.harvard.edu
Weihe Wendy Guan wguan@cga.harvard.edu

mailto:dstrohschein@cga.harvard.edu
mailto:stephenmcdonald@cga.harvard.edu
mailto:blewis@cga.harvard.edu
mailto:wguan@cga.harvard.edu

Basic Concepts
• MapReduce

– a programming model for processing and generating large data sets
– with a parallel, distributed algorithm on a cluster

• Hadoop is an open source implementation of MapReduce
– Uses commodity servers
– Can scale up from a single server to thousands of machines
– Strong resiliency by software detecting and handling failures

• Hadoop Distributed File System (HDFS)
– Data in a Hadoop cluster is broken down into smaller pieces (blocks) and

distributed throughout the cluster
– Map and reduce functions are executed on smaller subsets of the larger data

sets
– Provides scalability for big data processing

• The Apache Hadoop YARN (Yet Another Resource Negotiator)
– One of the key features in 2nd-generation Hadoop
– A cluster management technology

When to Use Hadoop

• Large calculation problems suitable for a “divide
and conquer” solution
– Problem can be broken into parts and run separately
– Answer to one part does not influence the answer to

another part

• Large numbers of processors
– Accessible
– Affordable
– Easy to manage

Case 1: Crawling the web for map
services to enhance WorldMap

• WorldMap is a web-based, open source,
collaborative mapping platform
– under development at Harvard CGA since 2010

• The National Endowment for the Humanities
Implementation Grant sponsored creation of a
comprehensive and sustainable map service
registry in WorldMap
– for discovery, creation and sharing of any work

that can be represented spatially

Key Objectives

• Uncover the millions of online web map
servers and their layers (the dark geoweb)

• Make the layers accessible to anyone within
any mapping application

• Take advantage of active and passive crowd
curation to improve search in a metadata-
weak environment

• Create a public open source data discovery
platform anyone can build on and improve

Creating a Global Map Service Registry

• Build registry of web map services (millions of
map layers)

• Allow anyone to add new services to the registry
• Maintain uptime statistics on each service
• Provide a fast, faceted search interface
• Use WorldMap usage statistics to improve search
• Make API available so any system can use it
• Eventually bring in stats from systems outside

WorldMap which use the API

Building the Registry Open API

• Public, RESTful API
• Access all (public) map layers within WorldMap
• Access all service layers outside WorldMap
• Access all Maps (collections of layers) within

WorldMap
• Search on information:

– Metadata
– Usage statistics
– Attribute info (for local layers)

Distributed
Map

Services

S
e
r
v
i
c
e
s

A
P
I

Service
Registry

Distributed
Users

WorldMap

OpenLayers,
Leaflet

Esri
clients

Any
map
client

Find and bind
to layers

Crowd curation, user
submitted services

WorldMap

Service
caching,

reprojection

WorldMap
Local

Services

Uptime
Checker

WorldMap
Core

Service
Crawler

*Common Crawl

*Start with hadoop search of
Common Crawl dataset
http://commoncrawl.org/

Temporal Properties

• Remote map services
– Last harvest date
– Uptime statistics

• Data submitted to WorldMap
– Date data describes (metadata)
– Date data was created (metadata)
– Date data was submitted (system tracking)

• Search tool supports search by time

How Many Layers Are Out There?

• We estimate millions, totaling petabytes of data
which is currently VERY hard for the average
researcher to find and use.

• Try this to estimate number of Esri REST servers
(718,000)
– allinurl: http "arcgis rest services" mapserver -test -

kml -kmz -sitemap -query
• Try this to estimate number of WMS servers

(30,000)
– allinurl: http "?request getcapabilities" -test

An Approach for Crawling the Web
Using Hadoop

• Search web for signatures against the Common Crawl (CC)
commoncrawl.org archive
– Stored as compressed Web Archive (WARC) formatted files on

Amazon S3.
– CC is entire content, less multimedia, of the publicly-available

web
• Employ multiple machines to process the data in parallel

– Avoid investing in hardware by using the Amazon EC2
• Use Hadoop/YARN framework executing Map/Reduce

functions to aggregate information about URLs to spatial
assets
– http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-

yarn-site/YARN.html
• Collect URLs for later processing and harvesting

Software Design Considerations

• There is some advantage in using Java since
Hadoop is written in Java, but many are using
Python and other languages
– We used Java

• WARC files can be processed with well known
Web-Scraping tools
– We used jsoup http://jsoup.org/

• Some processing is required to prepare crawl
output for harvesting
– We used AWK scripts

http://jsoup.org/

Processing a WARC File
• Search WARC files for well-known

geospatial service or data
signatures.

• A signature is a set of string
combinations of interest. The
application compares these
signatures against the “href” tags
within the WARC file being
processed.

• For example, those URLs that
contain the string
"arcgis/rest/services" and the word
“mapserver”, but don’t contain the
following words: “test”, “kml”,
“kmz”, “sitemap”, or “query”, are
one type of URL ‘signature’ of
interest.

Some signatures We Looked for
• OGC Services

– Look for "?request getcapabilities" and not “test” in the href
URL

• ESRI Rest Services (in the Target-DOMAIN-URI string within
the WARC Response Header text)
– Look for “/arcgis/rest/services” in the target-DOMAIN-URI

• KML or KMZ files
– Look for an href URL ending in .kml or .kmz

• Compressed shapefiles
– Look for “shape” or “shp” and string ending with “.zip” in the

href URL
• Tile Servers

– Look for “tile” or “tiles” and string ending with “.png” in the href
URL

Sample text from a WARC File
WARC/1.0
WARC-Type: response
WARC-Target-URI: http://vcgi.vermont.gov/warehouse/web_services#maps
WARC-Date: 2014-11-18T13:32:21Z
WARC-Record-ID: <urn:uuid:c44719a1-93bb-de00-4730-87165d2f7d79>
Content-Type: application/http; msgtype=response
Content-Length: 42025

WARC Header Info

<p>Vermont Parcel Boundaries, VT State Plane Meters:

ArcGIS 10.x Layer File
|
<a href="http://maps.vcgi.org/arcgis/services/EGC_services/MAP_VCGI_VTPARCELS_SP_NOCACHE_v1/MapServer/WMSServer"
target="_blank">
ArcGIS 9.3 or lower and Open Source GIS
</p><p>Vermont Parcel Boundaries, Web Mercator:

ArcGIS 10.x Layer File

Example Signatures

• Signature search facilitated by the use of
several functions designed to detect a class
of signatures.

• The example on the right is one such function
designed to detect those [geoservice] URLs
that are associated with the ESRI REST
services.

• When processing a WARC, the HTML text of
the response is parsed by jsoup, a Java library
designed to separate the contents of an
HTML document into a branched structure
that will facilitate further processing.

• During this operation, those ‘href’ strings
within an anchor tag ‘<a> … ‘ of the
document are compared with each signature
function for a match.

• If one is found, the signature key receives a 1
for its value.

• The key/value pairs are aggregated later,
during the ‘reduce’ phase of the operation.

//Look for ESRI Rest services, i.e. allinurl: http "arcgis rest
services" mapserver -test -kml -kmz -sitemap -query
public static Boolean isArcRestServices(String lowerURL){
 Boolean returnVal = false;
 if (lowerURL.contains("/arcgis/rest/services/") == true &&
lowerURL.contains("mapserver")== true){
 if (lowerURL.contains("test") == false){
 if (lowerURL.contains("kml") == false){
 if (lowerURL.contains("kmz") == false){
 if (lowerURL.contains("sitemap") == false){
 if (lowerURL.contains("query") == false){
 returnVal = true;
 } else {
 returnVal = false;
 }
 }
 }
 }
 }
 }
 return returnVal;
}

ESRI REST Services Search Function

Java Code Signature Search

Lessons Learned
• Learning curve

– Takes time to understand and implement the Map/Reduce
paradigm in the AWS Hadoop/YARN framework

– But there are multiple sources of useful examples and libraries
• Easy to run out of memory

– It is easy to get Java heap errors, so configure machines with
enough memory to execute

– But keep memory small enough to make efficient use of
instance RAM

• Better performance does not generally cost more
– Depending on the type and number of instance, the cost is the

same – it’s the processing time that’s different
– Balance the choice of instance type, memory allocation, and

number of instances in order to process the files in an efficient
and cost effective manner.

WARC Processing Statistics

Date WARCs
Processed

Cluster Size Instance Type Processing Time Items
Found

cost

Dec. 1,
2014

15 1 master
3 slaves

m1.medium
3GB heap size

34 minutes $0.70

Jan. 20,
2015

13212 1 master
25 slaves

r3.xlarge
4.7GB heap size

20 hours 406016 $364.0
0

Jan. 22,
2015

13212 1 master
50 slaves

r3.xlarge
4.7GB heap size

10 hours 297569 $357.0
0

Jan. 23,
2015

13212 1 master
100 slave

R3.xlarge
4.7GB heap size

5 hours 306120 $353.0
0

Initial Output of Crawl Processes

Date WARCs
Processed

ESRI Servers OGC Servers Tile Servers Shape Files KML Files

Jan. 20,
2015

13212 521 365 6421 24689 374020

Jan. 22,
2015

13212 667 308 5930 23667 266977

Jan. 23,
2015

13212 446 331 6068 25583 273802

Crowd Curation of Map Services

• Passive
– Count frequency of URLs from crawl
– Capture page rank for URLs after crawl

• Active
– User adds a layer to a map in WorldMap
– User certifies a layer in WorldMap
– User ranks a layer in WorldMap

Calculating URL Frequency of
Occurrence

• For every WARC file that is processed, 0-N Key /
Value (K/V) pairs are generated.

• Each K/V represents a URL string and the number
of occurrences of that URL in the WARC file.

• These K/V pairs are aggregated, by URL, at the
end of all WARC file processing.

• A URL’s frequency of occurrence is calculated by
taking the total number of times it occurred in all
the WARC files processed, divided by the total
number of all URLs that matched one of the
signatures.

Ranking Search Results

• Using Lucene/Solr one can incorporate many
factors to rank search results, including:
– Multiple occurrences of URL on web
– Page rank of page where URL was discovered
– Service used in a map in WorldMap
– Results match key word or synonym
– Results are toward center of spatial extent defined

Current (ALPHA) Map Service Layer
Search Client

Here is an initial version of a search
client using Lucene heatmaps against
a Solr registry containing overlapping
layer footprints for local and remote
layers.

Case 2: Query, analyze, and subset
global geo-tweets

• We need a Big Spatiotemporal Data Visualization Platform

– One of our evaluated approached was to use in-memory Hadoop
– At the end we decided not to use Hadoop for performance reasons

• We developed a solution that is simpler, using Lucene
– We built spatial heat-mapping into Lucene (with sharding)
– This solution can scale to visualizations against millions, even billions

of features.
– https://lucene.apache.org/

• We chose the OpenGeoPortal search client and Solr schema
– for deploying the heatmap search
– https://github.com/OpenGeoportal/OGP

https://lucene.apache.org/
https://github.com/OpenGeoportal/OGP

Case 3: Calculate network distances between
thousands of points (billions of calculations)

We plan to parallelize on Hadoop to break job into many
pieces, using one of two approaches:
1. Create custom Amazon Machine Instance (AMI) using

PostgreSQL/PostGIS with pgRouting libraries
– pgRouting supports numerous shortest path algorithms
– http://pgrouting.org/; http://postgis.net/

2. Implement Hive database
– Hive is a native Hadoop database application with geospatial

extensions
– This requires implementing a shortest path algorithm in basic

geospatial SQL
Both approaches require road vectors stored in Amazon
Web Services (AWS) Simple Storage Service (S3) for
desired performance

http://pgrouting.org/
http://postgis.net/

Designed Workflow
(not implemented yet)

• Use the Hive Geospatial extensions
– GIS Tools for Hadoop: Big Data Spatial Analytics for the Hadoop

Framework
– http://esri.github.io/gis-tools-for-hadoop/

• Store road vector data files on Amazon S3 storage
• Create a distance node graph from road data
• Use a Java algorithm for Dijkstra’s shortest path algorithm

– http://algs4.cs.princeton.edu/44sp/DijkstraSP.java.html
• Combine this algorithm with the “Spatial Framework for

Hadoop” and the ”ESRI Geometry API for Java” (from “GIS
Tools for Hadoop”)

• Execute the code within the Hive framework to leverage off
of geospatial calculation capabilities, i.e. ST_DISTANCE()

AAG Annual Meeting
Chicago, IL
4/21/2015

Investigating Hadoop for Large
Spatiotemporal Processing Tasks

David Strohschein dstrohschein@cga.harvard.edu
Stephen Mcdonald stephenmcdonald@cga.harvard.edu

Benjamin Lewis blewis@cga.harvard.edu
Weihe Wendy Guan wguan@cga.harvard.edu

mailto:dstrohschein@cga.harvard.edu
mailto:stephenmcdonald@cga.harvard.edu
mailto:blewis@cga.harvard.edu
mailto:wguan@cga.harvard.edu

	Investigating Hadoop for Large Spatiotemporal Processing Tasks
	Basic Concepts
	When to Use Hadoop
	Case 1: Crawling the web for map services to enhance WorldMap
	Key Objectives
	Creating a Global Map Service Registry
	Building the Registry Open API
	Slide Number 8
	Temporal Properties
	How Many Layers Are Out There?
	An Approach for Crawling the Web Using Hadoop
	Software Design Considerations
	Processing a WARC File
	Some signatures We Looked for
	Sample text from a WARC File
	Java Code Signature Search
	Lessons Learned
	WARC Processing Statistics
	Initial Output of Crawl Processes
	Crowd Curation of Map Services
	Calculating URL Frequency of Occurrence
	Ranking Search Results
	Current (ALPHA) Map Service Layer Search Client
	Case 2: Query, analyze, and subset global geo-tweets�
	Case 3: Calculate network distances between thousands of points (billions of calculations)
	Designed Workflow�(not implemented yet)
	Investigating Hadoop for Large Spatiotemporal Processing Tasks

