Using Smartphones for Dynamic Mapping and Planning of Transit Systems in Africa

Zachary Patterson, PhD
Concordia University, Montreal

Dynamic Mapping of Secondary Cities Symposium
Center for Geographic Analysis
Harvard University
15 June 2016
Smartphones and Locational Data

The result: we can collect locational data, easily, anywhere in the world.
Trotros in Accra - Background

Accra: Capital City of Ghana
Trotros in Accra - Background

• Accra Municipal Assembly
 – Registers routes, drivers and vehicles
 – Sets harmonized fares

• Operator Unions
 – Operate out of dedicated terminals
 – Deliver transport services (Trotros)
 – Negotiate fares
Accra Mobile Project - Background

• Accra Municipal Assembly had:
 – List of routes
 – Origin and destination terminus
 – Regulated fare

• ...but lacked information on...
 – Routes in service
 – Actual route (itinerary)
 – Stops
 – Actual fares
AccraMobile Objectives – Phase I

1. Audit existing routes

2. Map existing route itineraries

3. Collect stop data
DataMobile Travel Survey App

DataMobile on Android

DataMobile on iPhone
Short Survey

Travel to Work

HOW DO YOU TYPICALLY COMMUTE TO YOUR WORK LOCATION?

- Public Transit
- Bicycle
- Car (as driver)
- Car (as passenger)
- Walk only
- Car and public transit

DO YOU USE ANY ALTERNATIVE MODE OF TRAVEL TO WORK?

No
Data Collection and Visualization
Tap Log

• A personal event logger
• Logs events and associated information
• ...including locational data
Use of Apps

1. DataMobile used to collect
 • Route itineraries
 • Distances and travel times

2. TapLog used to collect
 • Stop location and name
 • Boardings and alightings
 • Fares
Project Conception

AMA – Dept. Of Transport
Project definition: mapping Accra’s Trotros
Feedback on practical issues arising from field-testing

AFD
Facilitation

Concordia University
Draft data-collection protocol using GPS-enabled smartphones
Adjustments to protocol

TWO MONTHS
Data Collection

AMA – Dept. Of Transport
- Data collection: dispatching of eleven surveyors on the field
- Visual verification of collected data
- Correction/additional recording

AFD
- Facilitation

Concordia University
- Automated processing and quality check
- Route mapping
Data Processing and Preparation

AMA – Dept. Of Transport
Data collection: dispatching of eleven surveyors on the field
Visual verification of collected data
Correction/additional recording

AFD
Facilitation

Concordia University
Automated processing and quality check
Route mapping

TRIP Lab Servers
Final Route Mapping

AMA – Dept. Of Transport
Data collection: dispatching of eleven surveyors on the field
Visual verification of collected data
Correction/additional recording

AFD
Facilitation

Concordia University
Automated processing and quality check
Route mapping

TWO MONTHS
Correction/Validation

AMA – Dept. Of Transport
Data collection: dispatching of eleven surveyors on the field
Visual verification of collected data
Correction/additional recording

AFD
Facilitation

Concordia University
Automated processing and quality check
Route mapping
Findings – route Audit

• Of 580 routes registered...
• ...only 315 in service and mapped
• Unmapped routes were:
 – Inexistent (reporting errors)
 – Inactive ("ghost routes")
Map of Routes
Map of Routes
Map of Routes

Allowed identification of underserved areas.
Concentration of stops:

- Around terminals
- Along main roads
Findings – Route Characteristics

<table>
<thead>
<tr>
<th>N=629</th>
<th>Speed</th>
<th>Fare</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Km/h</td>
<td>In/out Diff</td>
</tr>
<tr>
<td>Minimum</td>
<td>4.17</td>
<td>0.01</td>
</tr>
<tr>
<td>Maximum</td>
<td>59.24</td>
<td>41.74</td>
</tr>
<tr>
<td>Mean</td>
<td>16.07</td>
<td>4.72</td>
</tr>
<tr>
<td>Median</td>
<td>14.59</td>
<td>3.62</td>
</tr>
</tbody>
</table>
AccraMobile Objectives – Phase II

• Make Trotro route data more accessible
 – GTFS
 – User-friendly map
• In-depth knowledge of routes and operations
 – Route itinerary variation
 – Estimates of total transit supply
GTFS

- General Transit Feed Specification
- Database standard describing a transit system
- Allows for routing with Google Transit and apps
- AMA wanted Accra data in this format
GTFS - Hackathon

- 40 participants, 15 teams
- 1st Prize - Mogo
 - Multimodal trip planning smartphone app
- Most innovative – Magic Route
 - SMS trip planner
- Runner-up – Wool3 (Woolé)
 - Social media journey planner
GTFS -> User Map
GTFS -> User Map

- Useful to planners and authorities
- Difficult for Trotro users to interpret
GTFS -> User Map

- With GTFS data...
- ...Postgres/PostGIS
- ...QGIS...
- ...a Fine Arts student...
- and Illustrator...
Route Variation

• Phase I provided a snapshot of Trotro system
• A critical question for users:
 – Do routes always take the same roads?
 – Do they always take the same amount of time?
• One goal of Phase II was to understand how much variation
Route Variation

Routes operating from Kaneshie Station
Total Transit Supply

• Trotro map indicates extent of the system
• Route variation provides estimate of reliability
• Total transit supply is unknown
• Phase II will allow estimates of total supply
Total Transit Supply

- The system is organized around terminals
- Terminals are divided into substations
Total Transit Supply

• A substation houses:
 – ~6 routes
 – ~50 Trotros

• Trotros allocated to routes on boards

• Record of boards provides all activity

• This info + maps can lead to supply estimates

Example of route assignment board
Conclusions

• AccraMobile continues to demonstrate:
 – Successful use of collaborative technologies for teams working far apart on dynamic mapping
 – Technological leapfrogging of planning techniques in Africa
 – Interest of using mobile technologies for transit planning in Accra
Acknowledgements

Canada Research Chairs

- Alex Johnson (Accra Municipal Assembly)
- Simon Saddier (Agence française de développement)
- Kyle Fitzsimmons (TRIP Lab)
- Natalie Wiseman (TRIP Lab)
- Megan Chan (TRIP Lab)