Deterring or Displacing Electoral Irregularities? Spillover Effects of Observers in a Randomized Field Experiment in Ghana

Nahomi Ichino
Assistant Professor of Government
Harvard University

Elections and Electoral Irregularities in New Democracies

- Africa’s “Second Independence” → competitive elections in many countries
Elections and Electoral Irregularities in New Democracies

- Africa’s “Second Independence” → competitive elections in many countries
- Elections as mechanism for politicians being held accountable to citizens
Elections and Electoral Irregularities in New Democracies

- Africa’s “Second Independence” → competitive elections in many countries
- Elections as mechanism for politicians being held accountable to citizens
- But perhaps broken mechanism when elections are marred by irregularities
- Academic concerns: electoral behavior, vote outcomes, democratic development
Elections and Electoral Irregularities in New Democracies

- Africa’s “Second Independence” → competitive elections in many countries
- Elections as mechanism for politicians being held accountable to citizens
- But perhaps broken mechanism when elections are marred by irregularities

- Academic concerns: electoral behavior, vote outcomes, democratic development
- Practice/policy concerns: how to improve the quality of elections
Incentives for Inflating the Voters Register

- Incentives for politicians to inflate the voters register *before* the election.

- Cover up extra votes (ballots or voters) on election day with credible turnout rates.

- Lower likelihood that problems will be noticed/fixed than on election day.

- How extensive is this form of pre-election irregularities?

- What is the effect of observers on voter registration?

- Key: political parties operate over space, so observers might just push problems from one registration center to another.
Incentives for Inflating the Voters Register

- Incentives for politicians to inflate the voters register *before* the election.
 - Cover up extra votes (ballots or voters) on election day with credible turnout rates.
Incentives for Inflating the Voters Register

- Incentives for politicians to inflate the voters register *before* the election.
 - Cover up extra votes (ballots or voters) on election day with credible turnout rates.
 - Lower likelihood that problems with be noticed/fixed than on election day.
Incentives for Inflating the Voters Register

- Incentives for politicians to inflate the voters register *before* the election.
 - Cover up extra votes (ballots or voters) on election day with credible turnout rates.
 - Lower likelihood that problems with be noticed/fixed than on election day.
- How extensive is this form of pre-election irregularities?
Incentives for Inflating the Voters Register

- Incentives for politicians to inflate the voters register *before* the election.
 - Cover up extra votes (ballots or voters) on election day with credible turnout rates.
 - Lower likelihood that problems will be noticed/fixed than on election day.

- How extensive is this form of pre-election irregularities? What is the effect of observers on voter registration?
Incentives for Inflating the Voters Register

- Incentives for politicians to inflate the voters register *before* the election.
 - Cover up extra votes (ballots or voters) on election day with credible turnout rates.
 - Lower likelihood that problems with be noticed/fixed than on election day.

- How extensive is this form of pre-election irregularities? What is the effect of observers on voter registration?
 - Key: political parties operate over space, so observers might just push problems from one registration center to another.
Voter Registration in Ghana, August 2008
Model with Spillovers
Since party agents operate with distances/locations of registration centers in mind, we need to know this, too → GIS project, georeferencing constituency maps and geocoding polling stations.
Randomized field experiment in Ghana in 2008 in cooperation with the Coalition of Domestic Election Observers (CODEO) to establish a lower bound on registration irregularities.
Setup of Experiment
Mixed Message: deterrence but also displacement

- Increase in the number of registered voters is about 4 percentage points smaller in electoral areas visited by observers (lower bound).
Mixed Message: deterrence but also displacement

- Increase in the number of registered voters is about 4 percentage points *smaller* in electoral areas visited by observers (lower bound).

- **Spillovers:** Increase in the number of registered voters is about 2.5 percentage points *greater* when an electoral area in a 5km radius is visited by an observer.

Mixed Message: deterrence but also displacement

- Increase in the number of registered voters is about 4 percentage points *smaller* in electoral areas visited by observers (lower bound).

- **Spillovers:** Increase in the number of registered voters is about 2.5 percentage points *greater* when an electoral area in a 5km radius is visited by an observer.

- The effect of a neighboring visited electoral area is greater at smaller radii.

Mixed Message: deterrence but also displacement

- Increase in the number of registered voters is about 4 percentage points smaller in electoral areas visited by observers (lower bound).

- **Spillovers:** Increase in the number of registered voters is about 2.5 percentage points greater when an electoral area in a 5km radius is visited by an observer.

- The effect of a neighboring visited electoral area is greater at smaller radii.

Means of Pre-Treatment Variables by Treatment Assignment Status

<table>
<thead>
<tr>
<th></th>
<th>Registered Voters in 2004</th>
<th># ELA in 5 km</th>
<th># ELA in 10 km</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T^C = 1, T = 1$ (a)</td>
<td>1926</td>
<td>2.7</td>
<td>6.9</td>
</tr>
<tr>
<td>$T^C = 1, T = 0$ (b)</td>
<td>2196</td>
<td>3.1</td>
<td>7.5</td>
</tr>
<tr>
<td>$T^C = 0, T = 0$ (c)</td>
<td>1800</td>
<td>2.6</td>
<td>6.9</td>
</tr>
</tbody>
</table>

(a) – (b)	-271	-0.4	-0.5
	(382)	(0.4)	(0.7)
(b) – (c)	397	0.6	0.6
	(253)	(0.3)	(0.5)

Standard errors from t-tests in parentheses. N=863 ELAs.
Model with Spillovers

\[
Y_{ij} = \beta_0 + \beta_1 T_{ij} + \beta_2 T^c_i + \sum_d (\beta_{3d} \cdot t_{dij}) + \sum_d (\beta_{4d} \cdot T_{ij} t_{dij})
\]

\[
+ \sum_d (\beta_{5d} \cdot n_{dij}) + \sum_d (\beta_{6d} \cdot T_{ij} n_{dij}) + \mu_b + \epsilon_{ij}
\]

where \(t_{dij} \) is the number of electoral areas assigned observers in distance \(d \) of electoral area \(j \) in constituency \(i \) and \(n_{dij} \) is the number of electoral areas in distance \(d \) of electoral area \(j \) in constituency \(i \). \(d=0–5 \) km, 5–10km, etc.

Local deterrence: \(\beta_1 < 0 \)
Displacement to neighbors: \(\beta_{3d} > 0 \)
Effect of Registration Observers on Percentage Change in Registration from 2004 to 2008, with Spillovers

<table>
<thead>
<tr>
<th></th>
<th>(1) OLS</th>
<th>(2) OLS</th>
<th>(3) IV</th>
<th>(4) IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment constituency (T^C)</td>
<td>-0.0386^{+}</td>
<td>-0.0384</td>
<td>-0.0327</td>
<td>-0.0332</td>
</tr>
<tr>
<td></td>
<td>(0.0216)</td>
<td>(0.0230)</td>
<td>(0.0222)</td>
<td>(0.0234)</td>
</tr>
<tr>
<td>ELA with observer (T or V)</td>
<td>-0.0272^{+}</td>
<td>-0.0356^{*}</td>
<td>-0.0456^{*}</td>
<td>-0.0474^{*}</td>
</tr>
<tr>
<td></td>
<td>(0.0153)</td>
<td>(0.0169)</td>
<td>(0.0203)</td>
<td>(0.0214)</td>
</tr>
<tr>
<td>ELA with observer (T or V)</td>
<td>0.0288^{***}</td>
<td>0.0273^{***}</td>
<td>0.0235^{**}</td>
<td>0.0232^{*}</td>
</tr>
<tr>
<td>in 5 km</td>
<td>(0.0067)</td>
<td>(0.0067)</td>
<td>(0.0080)</td>
<td>(0.0087)</td>
</tr>
<tr>
<td>ELA with observer (T or V)</td>
<td>0.0086</td>
<td>0.00901</td>
<td>0.0020</td>
<td>0.0026</td>
</tr>
<tr>
<td>in 5–10 km</td>
<td>(0.0064)</td>
<td>(0.0073)</td>
<td>(0.0060)</td>
<td>(0.0068)</td>
</tr>
<tr>
<td>T (or V) * ELA with observer</td>
<td>-0.0075</td>
<td>-0.0159</td>
<td>-0.0039</td>
<td>-0.0053</td>
</tr>
<tr>
<td>in 5 km</td>
<td>(0.0115)</td>
<td>(0.0139)</td>
<td>(0.0132)</td>
<td>(0.0161)</td>
</tr>
<tr>
<td>T (or V) * ELA with observer</td>
<td>0.0261^{**}</td>
<td>0.0159</td>
<td>0.0289^{**}</td>
<td>0.0267^{*}</td>
</tr>
<tr>
<td>in 5–10 km</td>
<td>(0.0087)</td>
<td>(0.0114)</td>
<td>(0.0102)</td>
<td>(0.0128)</td>
</tr>
<tr>
<td># ELA in d & interactions</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Block FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R^2</td>
<td>0.205</td>
<td>0.207</td>
<td>0.202</td>
<td>0.203</td>
</tr>
</tbody>
</table>

Disturbances clustered at the constituency level; robust standard errors in parentheses. $N = 863$. $^{+} p < 0.10$, $^{*} p < 0.05$, $^{**} p < 0.01$, $^{***} p < 0.001$