Using Geographic Information Systems and Questionnaire Data to Predict Indoor and Outdoor Concentrations of Traffic-Related Air Pollution

Jonathan I. Levy¹, Jane E. Clougherty¹, Lisa K. Baxter¹, Rosalind J. Wright² ¹Harvard School of Public Health, Department of Environmental Health, Boston, MA; ²Channing Laboratory, Boston, MA

RESULTS

Locations of 43 air pollution sampling sites

00m Kernel MHD surf:

661 - 1 322

1985,2644

E 67-20

10.100

Om Kernel traff

Indoor Concentration

Mean (SD)

87.2 (3680)

14.7 (18.0)

1120 (699)

0.12 - 2.2

12.8 - 676

5 53 - 1480

2.27 - 2520

0.528 - 2920

3.40 - 1050

310 - 3910

0.392 - 15.5

N

62

62

62 3.54 (2.66)

1644-3.305

ion-Cohort Home Om Kernel traffi

INTRODUCTION

- Asthma prevalence is elevated in low-SES urban settings, but few studies have evaluated outdoor exposure gradients within these urban areas, and indoor exposure patterns are rarely considered.
- Numerous studies have found associations between GIS-based measures of residential proximity to traffic and respiratory outcomes, but such studies have often been in non-residential settings and measures may not be strongly correlated with the causal agents.
- Exposure misclassification is exacerbated by the presence of indoor sources of key traffic-related air pollutants (i.e., nitrogen dioxide, fine particulate matter) and by differential ventilation/time activity patterns.
- This study is part of the Asthma Coalition on Community, Environment, and Social Stress (ACCESS), a prospective birth cohort study assessing the contributions of environmental, social, and genetic factors to asthma etiology in urban Boston. Our objective is to characterize traffic-related air pollution exposures, for ultimate epidemiological applications.

SAMPLING METHODS

- · Homes selected based on initial traffic density
- classification, representation of target neighborhoods · Cohort homes supplemented with non-cohort participants for geographic representativeness
- Sampling in heating and cooling seasons, indoors and outdoors for:
 - Fine particulate matter (PM25): Harvard PEM, size-selective inertial impactor attached to a Medo linear-piston vacuum pump (4 LPM)
 - · Elemental carbon (EC): Reflectance analysis on particle filters
 - · Elemental analysis on particle filters using xray fluorescence spectroscopy (XRF) Nitrogen dioxide (NO₂): Yanagisawa passive
- filter badges · Traffic counts measured on highest-density road
- within 100 m of home (Jamar Trax I Plus) · Temperature/humidity measured with HOBOs
- · Questionnaires administered to participants linked to indoor sources, ventilation, indoor activities, etc.

Indoor and outdoor concentrations collected simultaneously using integrated 3 - 4 day measurements

STATISTICAL APPROACH

Outdoors

- · Use central site monitor to account for temporal variability · Develop GIS covariates representing different dimensions
- of traffic at different radii · Use correlation analysis to select among variables
- · Incorporate important modifying factors (i.e., wind speed and direction, presence of obstruction between home and roadway) as effect modifiers for traffic terms

Indoors

- · Use outdoor measurement for ambient contribution
- · Develop proxy for effective penetration efficiency using indoor-outdoor ratio of sulfur
- · Use guestionnaire information to capture indoor sources/activity patterns, restricted to variables with logical causal connection to pollutant of interest
- · Use mass-balance model concepts to develop appropriate functional form

CANDIDATE VARIABLES

GIS-based traffic indicators Cumulative Density Scares (inweighted/kernel-weighted at 50, 100, 200, 300, 500m buffer)

Distance - based measures (distance to nearest major road, highway, truck route) with available of with 50, 100, 200, 200, 500m bit

Summary measures (I can reavery ergn comment with 20, 10, 202, 202, 203, 203, 203, 203, 203, 20		Coefficients of determination (R ²)			
		Pollutest	Outdoor vs. Amblant	Indoor vs. Outdoor	
		NO ₂ PM _{2.5}	0.21	0.07	
			0.65	0.23	
Weekday/Weekend Effe	at (% of sample collected on the weekend)			0.42	
Indeer Sources	Candidate Pollutanta	Ca	N/A	0.3)	
Cleaning Activities	PM2 ,, Ca, Fe, K., Si, Na, Cl, Zz	- Fe	N/A	0.25	
Hamidifier Use	FM23, Ca, K, Si, Cl	K SL	N/A N/A	52_0 (0,0	
Candle Use	FM2 5, BC	Ha.	N/A	0.43	
Caoicing Time	PM225, RC, CE, FE, K, M, NE, CI, Zn	Cl Za	11/A 11/A	0.12	
Ger dave usige	NO ₂	3	N/A	0.7%	
Occupant density	FM2 5, Ca, Fe, K, Si, Na, Cl, Za	۷	N/A	0.37	

This research was supported by HEI 4727-RFA04-5/05-1. Additional support provided by NIH U01 HL072494, NIH R03 ES013988, PHS 5-T42-CCT1229661-02 (LKB), PHS 1-T42-OH008416-01 (LKB), and the American Lung Association Lung Health Dissertation Fellowship Grant (JEC).

OUTDOOR MODELS

Dependent R ² variable		Independent variables	Parameter estimate	p-value	
ln(PM _{2.5})	0.76	Intercept	0.21	0.32	
		In(central site PM2.5)	0.78	< 0.0001	
		Roadway length, 100m buffer	1.5E-4	0.02	
		Smoking/grilling near outdoor monitor	0.16	0.01	
		Block group population density	9.2E-6	0.01	
ln(EC)	0.44	Intercept	-0.61	0.004	
		In(central site EC)	0.48	0.002	
		Roadway length, 200m buffer	8.1E-3	0.08	
		(Roadway length, 200m buffer)* (% of hours with wind < 2 m/s)	4.6E-4	0.03	
		Cooling season	-0.48	0.0004	
NO ₂	0.56	Intercept	-12.5	0.009	
		Central site NO ₂	1.1	< 0.0001	
		Roadway length, 50m buffer	0.014	0.002	
		(Roadway length, 50m buffer)* (Obstructed from nearest major road)	-0.0094	0.005	
		Cooling season	4.9	0.001	
		Population density	4.0E-4	0.001	

SELECTED INDOOR-OUTDOOR MODELS

Dependent	R^2	Independent Variables	Parameter	p-value
Variable			Estimate	
PM _{2.5}	0.36	Outdoor Concentration	0.86	0.0002
		Cooking more than 1 h/day	5.9	0.04
		Occupant Density	3.8	0.09
EC	0.49	Outdoor Concentration	0.72	< 0.0001
NO ₂	0.16	Outdoor Concentration	0.53	0.02
-		Gas stove usage more than 1 h/day	5.7	0.07
s	0.78	Outdoor Concentration	0.95	< 0.0001
Са	0.45	Outdoor Concentration	0.49	< 0.0001
		Humidifier Use	18	0.0009
Na	0.46	Outdoor Concentration	0.44	< 0.0001
		Occupant Density	31	0.14
Zn	0.36	Outdoor Concentration	0.82	< 0.0001
		Cooking more than 1 h/day	6.0	0.02

SUMMARY OF CONCLUSIONS

- Outdoor PM_{2.5} displayed more temporal than spatial heterogeneity, with significant contributions from indoor sources
- Outdoor EC displayed significant spatial heterogeneity, explained in part by proximity to traffic, with no significant indoor sources
- Outdoor NO₂ displayed significant spatial heterogeneity, explained in part by proximity to traffic, with an influence of indoor gas stove usage
- Indoor-outdoor relationships were strongest for combustion pollutants without indoor sources (S, V), weakest for crustal elements
- Next steps: structural equation modeling to better characterize source contributions, approaches for extrapolation to full cohort

Ca (ng/m3) 29.4 (17.2) 9.12 - 11362 48.0 (84.8) Fe (ng/m3 66.5 (26.4) 154 - 16262 46.1 (20.0) 3.50 - 10157 5 (56 7) 191 - 44678.6 (8.22) 152 - 477

Pollutant	Ν	Mean (SD)	Range	N	Mean (SD)	Range
NO ₂ (ppb)	52	17.2 (5.67)	5.21 - 33.3	54	19.6 (11.0)	5.67 - 61.1
PM _{2.5} (µg/m ³)	60	14.2 (5.43)	6.75 - 31.3	64	20.3 (12.5)	6.77 – 74.9

Summary statistics (averaged by sampling session)

PM₂ s (us EC (m⁻¹ x 10⁻⁵) 0.63 (0.49) 0.08 - 3.80.57 (0.35)

0.194 - 3050

5.23 - 1520

413 - 11300

1.08 - 22.5

$K \; (ng/m^3)$ Si (ng/m3) 55 9 (71 9) 4.81 - 46762 83.4 (200) Na (ng/m3) 144 (160) 29.2 - 126062 185 (320) 15.2 (41.4)

14.7 (19.3)

1540 (1450

4.79 (4.00)

Outdoor Concentration

Maan (SD)

N

58

S (ng/m³)

V (ng/m3

Cl (ng/m3) $Zn (ng/m^3)$