
The Recovery of Netherlands Geographic
Information System (NLGIS-2)

June 11, Harvard University

Vyacheslav Tykhonov Richard Zijdeman Jerry de Vries
International Institute of Social History

NLGIS - Geographic Information System

General purpose of GIS

capture, store and manage data
analyze data
present data

Specific purpose of NLGIS-2

make possible to plot maps as for none GIS experts as for advanced researchers
share map polygons as service to make it sustainable and stable

Dutch GIS: Past, Present, Future

1. Kaartgis / NLGIS
2. HISGIS.NL (extremely detailed, but not temporal)
3. NLGIS-2 (detailed and temporal)

NLGIS project officially started by Onno Boonstra in 1984. It was a time when it took a lot of
hours to render even one map on the most powerful mainframes.

Initial state

When we started the recovery of the project website was already dead for a lot of years
(from 2009) and it wasn’t possible see how NLGIS-1 actually used to work.

Only published maps produced by NLGIS-1 were available in old books, articles and
presentations.

We’ve got only shapefiles and datasets preserved by Data Archiving and Networked
Services (DANS) to do something with it.

The main question was: what’s next?

Setting up

We started to collect list of basic requirements

Data values were extracted from the codebook for Historical Database Dutch Municipalities
(HDNG) and stored as CSV files

Over 200 shapefiles for each year have got verified

Preparation: standardization procedure

The list of amsterdam codes was extracted from all datasets as harmonization table and
stored in file as vocabulary

NLGIS-2 basic requirements list

- the common user of the system will be historical researcher, usually without advanced
technical skills

- this researcher wants a web based HGIS to allow the upload of data of his own
- NLGIS should have really simple and clear design
- all rendered maps should be downloadable in high resolution and should be fit in the

standard packages for documents and presentations
- user should be able visualize his data on the specific provinces he will choose
- NLGIS-2 engine should provide possibilities to choose categories number and colors

NLGIS, first version that got lost

NLGIS-2 team

Small but very skilled international team of dedicated professionals:

Richard Zijdeman
(Netherlands)
Project leader

Jerry de Vries
(Netherlands)
Information Analyst

Vyacheslav Tykhonov
(Ukraine)
Architecture, backend and frontend development

http://nl.linkedin.com/in/richardzijdeman
http://nl.linkedin.com/in/richardzijdeman
http://www.linkedin.com/pub/jerry-de-vries/13/751/537
http://www.linkedin.com/pub/jerry-de-vries/13/751/537
http://nl.linkedin.com/in/vyacheslavtikhonov
http://nl.linkedin.com/in/vyacheslavtikhonov

Our Development Model

NLGIS-2 used Agile software development model with strong influence of the people below:

Steve Blank - Customer Development methodology
Eric Ries - The Lean Startup
Peter Thiel - Zero to One
Clayton Christensen - The Innovator's Dilemma

We planned to release new features every 2-3 days.

Customer Development Methodology - Step 1

The development of NLGIS-2 from the beginning to the end was data driven.
Shapefiles were too heavy for geoservice so we immideately converted all files in geojson

First attempt was to plot different polygons without projection in ipython notebook:
http://nbviewer.ipython.org/github/rlzijdeman/nlgis2/blob/master/maps/usecases/viewer.ipynb

http://nbviewer.ipython.org/github/rlzijdeman/nlgis2/blob/master/maps/usecases/viewer.ipynb
http://nbviewer.ipython.org/github/rlzijdeman/nlgis2/blob/master/maps/usecases/viewer.ipynb

Customer Development Methodology - First iteration was without projection at all

Customer Development Methodology - Step 2

Problem statement
After first iteration we’ve discovered that we need to find right projection for all maps and compress geojson
in some ‘light’ format suitable for web applications.

Action
We made investigation on available map visualizations and libraries, learning about performance and
communication protocols. Matching list of requirements with D3.js, Leaflet.js, Vincent

Conclusion
Reading shapefiles in real time is making system slow, we need something else to deliver polygons.

Decision
Topojson was considered as the most used communication protocol in web applications so we converted all
shapefiles in topojson. Polygons size in general was compressed in 10 times.

Customer Development Methodology - Step 3

Technical decisions:
● store datasets in the database according to their relational model (posgresql)
● keep topojson for all polygons as one cached ‘piece’ in noSQL database with years as

keys (mongodb)
● amsterdam code should be the common key both for datasets and geofiles

The architecture of the system became modular:
- data should be provided by Data API (database)
- map polygons should be delivered by GeoAPI (topojson)
- both APIs should ‘talk the same language’ (json)
- webservice for the both modules was created on the basis of python flask

NLGIS-2 platform independence

Separating of Data API and GeoAPI allows:

to use any visualization library:
● D3.js
● Leaflet.js

to connect any statistical package:
● R Studio
● iPython notebook
● SPSS

to build any GIS applications around it in any language
plot accurate historical maps on any website
show different maps for different audiences

Customer Development Methodology - Step 4

Problem statement
Now we have polygons and dataset values and it’s coming from APIs. But we need specific
attributes like scales and colors, legend, categories split. What’s next?

Main question
Should attributes be merged to the map on client or server side?

The Innovator's Dilemma
The most obvious decision just to put attributes on client side but how about possibilities to
download map with merged data as image?

Solution
We’ve developed Data Processing Engine and extended Data API with attributes selected by
user. Even calculated scales are there!

Data Processing Engine (DPE) specification

● can split values from any dataset in number of categories specified by researcher (8 by default)
● algorithm to categorize data values in proper categories can be selected manually (percentile by

default)
● can define maximum possible categories for specific dataset if there is no way to get categories

number specified by user of the system (for example, if there are 2-3 categories of data values)
● data ranges should be defined to get possibility to visualize data on some chart or map in the right

scale
● colors can be specified by user (Color Brewing, see http://colorbrewer2.org)
● legend generated and attached to all visualizations automatically
● values with missing data shown as 'no data' regions on map
● all data values delivered by Data API to make the data analysis platform independent and

communicate with other systems or statistical packages

Data API

Data API provided by Data Processing Engine is the most important functionality for the well
equipped digital infrastructure:

● easy way to analyze data in popular statistical packages (STATA, SPSS, Excel)
● use common data science programming languages like Python, R to perform more

advanced research using external Data Science libraries
● analyze data with toolboxes like Wolfram|Alpha and other Discovery Platforms (added

value for the future)
● suitable for other researchers and developers to use advanced technique and data

mining tools that aren’t developed yet

Example of output from Data API

● every dataset ingested by DPE available as Data API with unique code
● API can be filtered by variables extracted from the content of data file

Example:
http://nlgis.nl/api/data?code=TXGE&year=1937

{
 "data": [
 {
 "amsterdam_code": "10996",
 "cbsnr": "1",
 "code": "TXGE",
 "id": 3437884,
 "indicator": "TK",
 "naam": "ADORP",
 "value": 795.0,
 "year": 1937
 }
}

Data visualization and plotting data on historical maps

● Data Processing Engine (DPE) is the core of data visualization process and connected
to geoservice by amsterdam codes

● Internally DPE is keeping data inside of memory as pandas dataframe and already
prepared for any kind of analysis

● data attributes like scales and colors calculated by DPE on the fly based on the input
from researcher (for example, number of categories to split data)

● visualization of datasets on historical maps will be available to plot data on maps for
last 200 years but for older years DPE will use maps before 1812.

GeoAPI example

Geoservice can provide polygons for specific years on the national level rendered as
topojson or geojson.
GeoAPI:
/api/maps?world=on&year=1962

Polygons for all locations will be delivered as topojson:
arcs":[[1782,2186]]}]}},"arcs":[[[8387,6231],[0,5],[1,1],[1,-1],[2,0],[2,-1],[3,-4],[1,
-3],[0,-1],[-1,-5],[0,-1],[-1,2],[0,1],[-2,2],[-3,1],[-1,0],[-1,0],[-1,3],[0,1]],
[[8390,6247],[1,1],[0,1],[2,1],[1,0],[1,-2],[-1,-5],[-1,0],[-1,1],[-1,1],[-1,1],[0,1]],
[[8391,6204],[0,2],[-1,1],[-1,-1],[0,1],[0,1],[1,3],[1,0],[2,-6],[0,-1],[0,-1],[0,-1],
[-1,1],[-1,1]],[[8364,6093],[0,2],[2,5],[1,0],[1,-2],[-1,-6],[-1,-3],[-1,0],[-1,0],[0,1],
[0,3]],[[5941,6575],[0,-1],[-1,0],[-1,1],[0,1],[-1,0],[-1,0],[-1,0],[-1,0],[0,-1],[-1,-1],
[0,-2],[0,-1],[0,-2],[0,-1],[-1,-3],[-3,-2],[-4,-4],[-1,-1],[-1,0],[-2,-1],[-2,0],[-1,0],[-1,
-1],[-1,-2],[-5,1],[-1,0],[-1,-1],[-1,-1],[-1,0],[-2,1],[-4,3],[-1,1],[-1,2],[-2,8],[-1,4],
[-1,9],[0,1],[0,2],[0,1],[1,0],[0,-1],[0,-1],[1,-1],[0,-1],[1,0]

Dataset upload

It’s possible to upload data in 2 formats:
- long format

year, amsterdam_code
1811, 11150
1811, 11150
1812, 11150

- wide format (aggregated by values):
year, amsterdam_code, value
1811, amsterdam_code, 2
1812, amsterdam_code, 1

● The selection of colors implemented but reserved only for advanced users
● Scales determined automatically by Data Processing Engine
● Data values automatically split on categories number selected by user

NLGIS-2 audience

Now we made it simple as none GIS experts can plot their data on historical maps.

Users with no experience with GIS:
● General Public
● Researchers in social sciences
● Journalists

Advanced users:
● Developers (R, Python, etc)
● Researchers in computer Science

Why do researchers asking all time for accurate historical maps?

Maps can be used in different sciences like:
- Archeology
- Research on social movements

(migrations, strikes, social mobility, etc)
- Research on development of cities and provinces
- educational purposes

The data with map will tell the story.

NLGIS as “talking” map

● One map visualization is better then 1 000 words
● Must have for historical story telling if media refers to historical events
● Map can show the information that other visualizations can’t do
● Map is unique source of historical data to recover lost facts for scientists

Common problems of historical maps

● Standards are not clear
● Boundaries changes
● Location names changes over the time
● Sometimes it’s not possible to define actual boundaries
● Geographic changes not reflected for different countries
● Boundaries coming from different sources can be different for the same year
● Historical boundaries usually aren’t perfect and should be maintained

NLGIS-2 quality tips

● The legend is not always clear
● Sometimes scales can be wrong or categories number isn’t reachable
● Colors schema can be bad and not correspond to data
● Historical boundaries aren’t really accurate and should be improved
● At the moment there are only actual polygons from 1812 to 1997
● Mixing up historical and modern classification of locations can cause troubles
● Missing polygons for some regions not detected but possible

Technological Singularity of NLGIS - step 1

The “dots” use case was created by Richard Zijdeman:

1. Amsterdam Code in RDF from Gemeentegeschiedenis.nl (HicSunt Leones!)
2. Dutch Historical Census Data from CEDAR project
3. Plotting historical data in R from NLGIS APIs
4. Old school maps from New York Library
5. Interactive Plotting Christian Graul's from LeafletR

Technological singularity - step 2
Old school map combined with historical map and merged with actual map of Netherlands

Summary: Zero to One

- easy access to HDNG
- easy access to Boonstra maps
- easy plotting facility of own and HDNG data
- easy access to code through Github http://github.com/IISH/nlgis2
- data driven project, rather than technology driven
- can be easily recovered in the future as all datasets and geoinformation are public

available
- all datasets linked to their sources and notes

Live demonstration on nlgis.nl

http://www.nlgis.nl

Thank you!

“No subject is terrible if the story is true and if the prose is clean and honest.”

Ernest Hemingway, “Night in Paris”

Questions?

Try http://www.nlgis.nl now!

http://www.nlgis.nl

