

POLITECNICO DI TORINO DIATI Department of Environment, Land and Infrastructure Engineering

Hydro-geomorphometric study of a mountain basin in the north-west of Italy.

An analysis through **Terrestrial Laser Scanner**, **Drones** and **GIS** techniques for the water resources management and the natural hazard prevention

Eng. Muriel Lavy

Index

Who we are and what we do

Where we work

What instruments are available

STUDY: terrain surface + water + snow + glacier

CONClUSION & AKNOWLEDGMENT

Politecnico di Torino

SCHOOL OF ENGINEERING

SCHOOL OF ARCHITECTURE

SCHOOL OF SPEC. MASTERS

CAMPUS IN TURIN

Research areas

4 RESEARCH AREA 11 DEPARTMENTS

Industrial Engineering

To meet the real needs of the stakeholders Civil and Environmental Engineering Architecture Industrial Design

Management and Mathematics for Engineering

Information Technologies

4

Departments

DIATI

Environment, Land and Infrastructure

Engineering

Civil and Environmental Engineering Architecture Industrial Design

DAD

Architecture and Design

Structural, Geotechnical and Building Fngineering

DIST Department of Regional and Urban Studies and Planning

Department of Environment, Land and Infrastructure Engineering

Study the **technologies** which deal with **safeguarding**, **protecting** and **managing the environment and land**, the sustainable use of **resources**, as well as the optimal and eco-compatible development of **infrastructures** and transport systems.

Research Group

- 🔀 Eng. Enrico Suozzi, PhD
- 🔀 Eng. Gianpiero Amanzio, PhD
- 🔀 Eng. Stefano Crepaldi, PhD
- 🖌 Geol. Raffaella Ghione
- 🔀 Eng. Muriel Lavy
- 🔀 Eng. Federico Marchionatti, PhD
- 🔀 Eng. Nicole Nota
- 🖌 Eng. Ye Zhao, PhD

Eng. Enrico Suozzi, Ph.D.

Scientific Supervisor Associate Professor Applied Geology

CEO

Mobile Mapping

Arch. Emilio Misuriello

Commercial More than 20 years experience in the field of information systems planning.

8

Field of research

Environmental engineering

Applied geology & Hydrogeology

Geospatial analysis & GIS

Natural Phenomena

Water Resources

<u>Nore</u>

MASCOGNAZ VALLEY

Mascomaz 1 Mascomaz 2

Meteorological Station

 $\begin{array}{c} 10 \text{ km}^2 \\ 1830 \text{ m} \rightarrow 3030 \text{ m asl} \end{array}$

⊿Meters

5000

2 500

Observed Phenomena

Natural resources

- Climate change Groundwater & surface water
 Snow melting recharge

Environmental Hazard

- Snow avalanche Д
- Landslide Д
- **Glacial fall** Д
- Hydraulic instability Ħ

Video time...

Multi-parametric Probes

what we have

Meteorological Station

- ★ Snow Scale
- ★ Snow Pack Analyzer
- ★ Snow Depth
- ⊀ Thermometer
- ★ Hygrometer

🖌 Pluvio2

- ✓ Parsivel Enhanced precipitation identifier
- ★ CWS (All in one)
- ★ Thermometer
- ★ Hygrometer
- ✗ Gonio-Anemometer
- 🖌 Barometer
- 🗶 Buried Rain Gauge
 - Albedometer Measure global and reflected solar irradiance

Springs & Multiparameter probes

- Water Level
- ✓ Temperature
 - Electrical conductivity

Terrestrial Laser Scanner

What is a Laser Scanner?

Instrument able to acquire the *spatial coordinates* of a given region or surface of an object in an *automatic* way, *systematic* and with a *high speed*.

How does it work?

It is based on *time-of-flight* distance measurement using an infrared laser. The system is capable of measuring even *thousands of points per second*.

The laser beam is deflected by a mechanism of rotating mirrors and oscillating, varying the azimuth angle and zenith angle in discrete steps, illuminating the ground of contiguous points.

Terrestrial Laser Scanner

MAIN FEATURES

- D Eye safe operation in laser: Class 1
- □ Long range: up to 4000 m
- High speed data acquisition up to 222,000 means./sec
- Multiple Target capability Unlimited number of targets
- Built-in calibrated digital camera
- high accuracy, high precision ranging based on echo digitization and online waveform processing

Leica Viva GS10 and GS25

GNSS technology

RTK data-processing

• 1

POLITECNICO DI TORINO

:

23

Multirotor quadcopter

- Ready to Fly Design
- Flight time:10 to 15 min
- Camera mount

Fixed wings

- \checkmark Ready to Fly Design
- 🗸 Flight time: 50 min
- 🗸 Camera mount

swinglet cam

∢eBee

senseFly

The Study...

Hydro-GeoMorphometric Study

GIS Spatial Analysis

Arc**GIS**°

10.2

Understanding our world.

- 1. Morphometric Analysis
- 2. Hydrologic Analysis
- 3. Hydrographic Analysis

Digital Terrain Model 2m x 2m

Analysis

I. MORPHOMETRIC ANALYSIS

- \checkmark Hillshade
- $\checkmark~$ Determination of altitude and slope (min, med and max)
- \checkmark Determination of aspect
- \checkmark Evaluation of planimetric and effective surface

2. HYDROLOGIC ANALYSIS

- ✓ Removal of local pit and peak (fill)
- ✓ Flow Direction
- \checkmark Flow Accumulation and Drainage Area

Profile view of a sink before and after running FILL

.... removed peak

3. HYDROGRAPHIC ANALYSIS

- \checkmark Stream network extraction (threshold)
- \checkmark Stream ordering
- \checkmark Hypsometric curve construction
- \checkmark Watershed delineation
- $\checkmark~$ Number of sections, length, and height difference of stream network

Watersheds Waterbody Streams HydroPoints Drainage Network Flow *HydroFeatures* Time Series

esri

Channel

Hydrography

Time

Quantitative Analysis on Surface

Geomorphometric Parameters

ROUGHNESS

Northing

672400 672600 672800 673000 673200 672200 Easting

20 40 60 80 Surface Roughness (cm) Glenn et al.

(2006)

36

100

OPENNESS

Yokoyama et al. (2002)

CURVATURE

Tarolli, Sofia, Dalla Fontana (2010)

Quantitative Analysis on Surface

detection of hydraulic instability phenomena Geoprocessing tools model

Evaluation of area and volumes of deposit and erosion (Cut/Fill)

lydrologic study

26 meteorological stations collecting temperature, rainfall and snowfall data

Linear Trend of Precipitation and **Temperature** related to **Elevation**

 $P = a \cdot H + b$

40

Hydrological Inverse Balance

 $P = E_{+} + I + R$

P Calculator (2) + T c Calculator (3) + L Chi Calculator (5) + Calculator (6) + Calculator (6) + Calculator (7) + R Raster Calculator (7) + Calculator (7) +

The valley is at the contact of two basic structural Units

Output Maps

SPRINGS BEHAVIOR

Springs Vulnerability

Spring 1

Spring 2

Delay time **Safe protection Zone** 1877.0 1865.2 1882.8 1989.8

Improve the water MANAGEMENT 46

the istation

Snow pack study area

Manual punctual measurement

Snow pack section + stratigraphy

✓ Snow density → SWE
✓ Snow pack stability

TLS ACQUISITION

Video time...

TLS ACQUISITION

Ground Control Points:

- > Snow height
- ≻ Accuracy ≈ 1 1.5 cm

UAV & PHOTOGRAMMETRY

PHOTOGRAMMETRY & ORTOPHOTO

SNOW ACCUMULATION

- + Density + Aspect + Hillshade
- + Slope + Curvature

Snow Water Equivalent Snowmelt Process Snow Avalanche WSL Institute for Snow and Avalanche Research SLF

RAMMS

58

Swiss Federal Institute for Forest, Snow and Landscape Research WSL

Rapid Mass Movement Simulation

AVALANCHE Module

Voellmy Friction model (1955)

- Elevation
- Slope
- Curvature

RAMMS Avalanche Simulation

Two-dimensional dynamics modeling of rapid mass movements in 3D alpine terrain

Glacial Study

and with the station

Glacial risk Grandes Jorasses

Glacial risk Grandes Jorasses

PHOTOGRAMMETRIC PROCESSING

GLACIAL RISK LYS

64.

GLACIAL RISK LYS

Contact lake growth at the Lys Glacier tongue...

Glacial lake outburst flood GLOF

GLACIAL RISK LYS

can this lake generate an outburst flood and endanger inhabited areas downstream?

□ What water volume is accumulate? • What volume could be released? □ Is a "dam break" outburst possible?

rapid glaciers evolution due to climate warming

Video time...

ISE-NET

Conclusion

Terrain analysis \rightarrow environmental phenomena & natural instability

GIS techniques \rightarrow spatialize data

TLS and Drone \rightarrow integrated and fast

High resolute models \rightarrow evaluation of natural dynamic phenomena

Photogrammetric models \rightarrow volume evaluation and mass balance

CNICO

Acknowledgement

Valle d'Aosta

Valle d'Aosta

POLITECNICO DI TORINO DIATI

Department of Environment, Land and Infrastructure Engineering

del Politecnico di Torino

POLITECNICO DI TORINO

DIATI Department of Environment, Land and Infrastructure Engineering

Eng. Muriel Lavy

muriel.lavy@polito.it

Prof. Marina De Maio

marina.demaio@polito.it

Polítecnico di Torino Corso Duca degli Abruzzi, 24 10129 Torino Italy